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The isothermal elastic stiffness constants of a system of N rigid disks on a two- 
dimensional hexagonal lattice confined to an area A are calculated analytically in the 
high-density limit using one-particle cell cluster theory. The constants are calculated 
using the following equation: 

where Cijrl is the isothermal elastic constant, F is the Helmholtz free energy of the 
system, and the I)<,% are the strains (n represents all the strains). The isothermal elastic 
constants are then calculated in the high density limit for the rigid disk system into 
which a small concentration of monovacancies has been introduced, using the same 
approach appropriately modified. All the elastic constants are calculated to order l/t* 
where t = a/u - 1, a is the smallest distance between lattice sites, and D is the diameter 
of the disks. All the nonzero isothermal elastic constants are found to be proportional 
to the temperature. The elastic constant C,,,, = C,,,, which is zero in the perfect system 
becomes nonzero upon the introduction of monovacancies. However, the fact that 
C,,,, is found to be zero is an artifact of the one-particle cell cluster approximation. 

1. INTRODUCTION 

There are two possible methods utilizing cell cluster theory to calculate the 
elastic stiffness constants of a rigid disk crystal in the high density limit. One method 
[l] involves the equating of coefficients in two different expressions for the 
Helmholtz free energy of the system; one expression being the phenomenological 
Helmholtz free energy involving the system’s strains and elastic stiffness constants, 
and the other being an analogous expression derived from the cell cluster theory 
expansion of the partition function of the system, where the numerical values of the 
clusters are expressed as functions of the strains. To carry out the evaluation of 
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all the elastic constants using this method involves the evaluation of the same 
clusters in different strain fields as a function of the strains involved. This means 
the evaluation of many clusters is necessary; a tedious job, especially when two- or 
three-particle clusters are considered. 

The method used in this paper is simpler in principle in that it first involves 
evaluating the second derivative of the Helmholtz free energy, again expressed in 
terms of cell cluster theory, with respect to the strains, and then setting the strains 
equal to zero (see Eq. (1)): 

A is the area to which our system is confined. Although some of the integrals 
involved in this derivation are complicated, once they are evaluated, most are 
repeated in the evaluation of other constants. The obvious advantage of this method 
is that the actual evaluation of clusters as a function of particular strains is not 
necessary. 

The consideration of a small concentration of monovacancies in the lattice 
involves the development of a slightly different treatment, however, many aspects 
of the perfect lattice treatment are used unchanged or only slightly modified. 

We hope to extend the mathematical treatment developed in this paper to find 
the effect of monovacancies on the elastic stiffness constants of the three- 
dimensional fee and hcp lattices of hard spheres. 

2. GENERAL THEORY 

We first examine an unstrained two-dimensional, hexagonal lattice of N identical 
rigid disks whose centers are confined to an area A in a plane. Let A be covered by 
a regular hexagonal array of M points, where the integer M is limited to the values 

NmaX is the maximum number of disks which may be placed with their centers in A 
in a regular hexagonal array [2]. 

For such a system the Helmholtz free energy I;,(T, V) is given by 

F,(T, V) = -kTln Qhi, 

where QN is the canonical partition function which is given by 

(2) 

QN = (hzN)-l j, ... j ;Ir H(<j) dr, ... dr, , (3) 
.4 i<j=l 
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where 

and 

x = (h2/27rmkT)1~2, the mean thermal de Broglie wavelength, 
H(ij) = H(I rij j - U) (4) 

H(G) = 0, I bi I < u, 
= 1, I rzj I 3 u, 

H(ij) is the unit step function [3], and 

dri = dxi dyi . 

Because each disk is confined to the area closely surrounding its lattice site by 
its neighbors as the closest possible packing is approached, there are N! indistin- 
guishable ways of interchanging the disks on the lattice sites; therefore the custom- 
ary N! in the denominator of Eq. (3) has been eliminated. 

/ rii 1 denotes the distance between the centers of disks i and j, k is Boltzmann’s 
constant, h is Planck’s constant, g is the diameter of the disks, and m is the mass 
of a disk. 

Using cell cluster theory we can approximate the free energy of the system of 
disks described above by 

FN = NFcI,I) 7 (5) 
where 

Fu) = --kTln QU . (6) 

F(l,l) represents the Helmholtz free energy of a movable disk in a lattice of N - 1 
disks fixed on their lattice sites. The free area available to such a disk can be 
realized by considering only its six fixed neighbors (see Fig. 1). Q(,,,) is the partition 
function for this movable disk and is given by 

Qm = 0°F 1 I? ff(I r - Rd I - 4 dr. 
d=l 

(7) 

Here r is the position vector of the center of the movable disk and R, is the position 
vector of lattice site d with the lattice site of the movable disk taken as the origin. 
Hence, I r - Rd I is the magnitude of the distance from the center of the movable 
disk to lattice site d. 

Therefore, the canonical partition function for the N disks in area A at temper- 
ature T becomes 

QN GX (QdN = 02V1 [I fil ff(I r - Rd I - 4 drlN. (8) 



448 LANGEBERG, SALSBURG, AND MCLELLAN 

Hence 

F,--NkTlnQ’)-NkTln[jj~~H(,r-R,,,-n)~~dy]. (9) 

If we now introduce the effect of a strain upon the lattice, it is expedient to define 
a new set of strain coordinates (u, w), corresponding to (x, y) in the unstrained 
lattice. We also introduce a set of vectors (a 1 , az) to describe the strained lattice 

FIG. 1. An arrangement of disks on a hexagonal lattice. The figure A represents the one- 
particle cell cluster theory free volume available to the center of a disk surrounded by six fixed 
nearest neighbor disks numbered according to a convention which we will use throughout this 
paper. The vectors Rz and r are respectively a lattice vector locating the lattice site of disk 2, 
and the position vector of the movable disk, both of which use the lattice site of the movable 
disk as their origin. 

corresponding to (i, j), which we use for the unstrained lattice. (a, , a2) are not 
unit vectors, nor are they orthogonal (see Fig. 2). We define (al , a& such that in 
the limit of zero strain they become equal to (i, j), that is 

FIG. 2. The unit vectors i and j and the corresponding strained system vectors a, and a, . 
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where q represents the two-dimensional strain tensor. It therefore follows that 

l&$0, w) = 6, Y). (11) 

Similarly if we denote the coordinates of lattice site i by (V, , Wi) in the strained 
lattice, and by (Xi, Yi) in the unstrained lattice, it follows that 

The isothermal elastic constants are given by [4] 

(13) 

where we define rlij by 

(14) 

Finally we have replaced the double subscripts of the strains by single subscripts 
using the well-known convention 

(ll)t, 1 (22) ++ 2 (12) = (21)t, 6 (15) 

so that p, 4 = 1,2 or 6 for two dimensions. This notation will be used whenever it 
is convenient to do so. 

From Eq. (13) it is clear that we need to express FN as a function of the strains. 
In order to do this, we first express the Helmholtz free energy Eq. (9) in terms of 
strained coordinates. The Jacobian for the transformation from Cartesian to 
strained coordinates is found as follows: Let 

x = rl = val, + wa2, = slalz + s2a2r , (16) 

Y = r2 = + valv wazv = ha,, + s2azv, (17) 

where we have replaced v and w by s, and s2, respectively, to simplify notation 
and where 

a,, = a1 * i, a2% = a, * i, 

a 1y = a, l j, a,, = a2 * j. 
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Hence the Jacobian is given as follows [5]: 

= (det [$$-I det [%])“” 

= (det [$r +aLi] j1’2 = (det[aj . Q,])‘/~ = (det[2yij + 8ii])1’2. (18) 

Therefore in terms of strained coordinates Eq. (9) becomes 

FN s NkTln(X2) - NkTln [(det[2qij + &j)“” /s fiIH(I r - Rd I - u) 6~ SW]. 

(19) 
To express the configurational integral as a function of the strains, we notice that, 

H(I r - R, 1 - u) = H(I r - R, I2 - u”) (20) 

and 

1 r - Rd I2 = (r - Rd) * (r - Rd) 

= (val + wa2 - V,a, - W,a,) * (ual + wa2 - V,a, - W,a,). (21) 

After multiplying this out and evaluating the dot products of the strained lattice 
vectors using Eq. (14) we find 

I r - Rd I2 = (271~ + l)(v - V$ + (271~ + l)(w - W,)2 + 4qs(u - V&w - W,). 

(22) 
Upon dividing through by 2 the rhs of Eq. (20) becomes 

H $ K2771 + l)(u - f',)' + (2772 + l)(w - wa)' 
i 

+ 47j6(o - V&w - IV,)] - 11 = H(G). (23) 

Now Eq. (19) becomes 

FN E NkTln(X2) - ~ NtTln(det[2ni, - &I) - NkTln i/j fi H(C,) 6v 6wj. (24) 
d=l 

Using Eq. (24) we proceed to evaluate the elastic constants. First letting 
D = det[2qij - &I, it can be shown that 

= -2NkT ail &, . (25) 
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The contributions from the term arising from the Jacobian to the elastic constants 
are given in Table I. 

Now we proceed to evaluate the second derivative with respect to the strains 
of the last term in Eq. (24). 

TABLE I 

Elastic constant Contribution of Jacobian in units of 2 dgkT/3az 

First we let 

so we have for the second derivative of -iVkT In Q, 

wherep, q = 1,2, or 6. 
In Eq. (27) 

G$-),=. = SI rp(c(J (z$, H d#lZ 
and 

b=1 
bfa 

(28) 

sv SW. 
(29) 
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We now consider [l/Q (aQ/a~,)],,O using Eq. (23) and simplifying the arguments 
of the delta and unit step functions, we have 

(30) 
As we approach the high density limit in which the disks approximate close 

packing, the following expansion of the magnitude of the distance between the 
movable disk and its d-th nearest neighbor is valid, 

1 r - Rd 1 = a + (-R&z) * r + ... s a - wd * r, (31) 

where wd = RJa, and letter a is the distance between nearest lattice sites. 
In the high density limit only the first two terms need be considered. The use 

of the first two terms of this expansion is equivalent to replacing the circular 
collision boundary between the movable disk and fixed nearest neighbor disk d by 
a tangent line to that boundary perpendicular to the lattice vector extending from 
the movable disk’s lattice site i to lattice site d (see Fig. 3). The boundary lines 
of a movable disk in a perfect hexagonal lattice of fixed disks depicts a hexagon. 

FIG. 3. The collision circle boundaries imposed by the six fixed neighboring disks of a movable 
disk in a hexagonal lattice and the corresponding inscribed one-particle free area. Also shown is 
the high density approximation to this area, a hexagon. The sides of the hexagon are lines drawn 
tangent to the collision circles and perpendicular to the lattice vector of the corresponding disk 
with the lattice site of the movable disk taken as the origin. 

In the high density limit Eq. (30) can then be written as 



EFFECT OF MONOVACANCIES 453 

where 
& = a/a - 1 - w, * r/u, (33) 

where subscript a is not to be confused with the letter a which is defined above. 
We now define 

t = a/a - 1 (34) 

and divide the arguments of the delta and unit step functions by t. Also we define 
the reduced variables 

X’ 

Now Eq. (32) becomes 

where 

X 
=-9 crt 

y'=$ z=-$-. 

4; = 1 - w;z. 

(35) 

(36) 

(37) 

The derivative (N&/+,),,=,, in the high density limit is just a quadratic function 
of the coordinates of the six nearest neighbor disks surrounding the movable disk. 

Hence, @G/%A,4 can have three values depending on p. 
Proceeding with Eq. (36), it is now convenient to introduce the oblique coor- 

dinates 

(4 21 = x’, 
(b) z2 = -(l/2) x’ + (~‘/3/2)y’. 

Therefore 

J(zl ,zJ = det [ lit’3 2,$3 1 = 2/& (38) 

The area of the hexagon described by the denominator in Eq. (36) is 2 q/3, so 
from (36) we get upon transforming to oblique coordinates 

58rl7/3-7 



454 LANGEBERG, SALSBURG, AND MCLELLAN 

where now w, * z is expressed in terms of oblique coordinates. See Table II for all 
possible values of &’ in Cartesian and oblique coordinates and Fig. 4 for the w 
vectors pointing to the six nearest neighbor disks. 

The value of the integral given by (39) excluding 1/6t and (X,/&&,=, is always 
one. Hence, term (39) can easily be evaluated. These values are given in Table III. 

It now remains to evaluate the integrals in Eq. (29). In order to evaluate the 
integral involving a’, we have to carry out an integration by parts. 

TABLE II 

w, .z Cartesian coordinates Oblique coordinates (1 - w, .z) 

WI . z ZI 1 -- z1 
wg . i! (1/2)x’ ; (4,2)Y, Zl + z, 1 - z, - zp 
ws . z 41/2)X + (1/3/21Y’ Z2 1 - z1 
wq . z -Z1 1 + Zl 
w:, ‘2 -(1,2)x.---x (2/3/2)y’ -zl - z, 1 + Zl + 2, 
wg ‘Z (1/2)x’ - (&/Z)Y’ -Z2 1 + z2 

FIG. 4. Undistorted hexagonal flat-sided free area appropriate for the high density limit. 
Unit vectors w1 ... wB point toward lattice sites of nearest neighbors. The oblique coordinate 
system zl, z2 is used in evaluating the cluster integrals. 

Using 
a. a. 

V,s&-l1a,:", 

we find 

S’(C,) = 
a2(r - R,) . V&C,) 

2jr-RR,12 . 

w 

(41) 
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TABLE III 

Elastic constant 
Contribution to elastic 

constant in units of 2 d\/JkT/3a* 

Cl, lit 
G 1/t 
Cl, l/t forp = I, I/t forp = 2 

C,, 0 

C*, Oforp = 6, l/tforp = 1 

GW Oforp = 6, l/t forp = 2 

1/t* 
l/P 
lit2 
0 
0 
0 

Hence the integral involving 6’ in Eq. (29) becomes 

6 a2(r - R,) . V,S(C,) 4 c aC, 
21r-RR,12 (~l,-o G$j,=, fil H(cd sv sw. (42) a=1 

dfa 

Upon reducing the arguments of the delta functions, rearranging, and making 
the following substitution, 

(43) 
di-a 

integral (42) becomes [6] 

; jjS~Sw[v/(S[‘~;~~ -l]G)--S(“rrR,’ -l)V,*G] 

a2 
- 
-- 

4 cs Lf ( 
‘r;Ru’ -l,...,-;jjSl,SwS(&+l)V;G 

- u2 jj SvSwS (‘r,Ra’ - 1) V;G. --- 
4 (9 

Here we have used Green’s theorem in the plane to write the integral over an 
area as a line integral about the boundary of that area. Since this area completely 
encloses the area demarcated by the unit step functions in G, this line integral is 
equal to zero. 
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Hence we find that V, l G makes the following contribution to the rhs of Eq. (44), 

;jjii i 
a=1 b=l 

bfa 

x 6(c,) fi H(c,) 60 SW. 
d=l 

d#a,b 

Now proceeding as before to the high density limit, transforming to oblique 
coordinates and multiplying by NkT/2 1/3 a2t2 = NkTjQ, we get 

X 
ss s(&z’) %$b’> i H($d’) % 6z2. (46) 

d=l 
d#a.b 

The integral in (46) can be evaluated simply by considering whether the lines 
described by &’ and $b’ intersect within the area demarcated by the unit step 
functions. 

TABLE IV 

Elastic constant Contribution of Eq. (44) in units of 2 z/SkT/3ae 

Cl1 3/4P 

G 3/4t* 

Cl, or Czl 1/4t* 

CC36 1/4P 

Cl, or ccl, 0 

G or G2 0 

We can now write down the total contribution of order l/t2 of Eq. (44) to the 
elastic constants which are given in Table IV. The C,, contribution has been 
divided by four since when the Helmholtz free energy is differentiated by vii and 
qlcl , where i # j and k f; 1, four times the actual value of the elastic constant 
C,,,, is actually obtained. 

Upon dividing by Q, proceeding to the high density limit, and transforming to 
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oblique coordinates as before the other integral on the rhs of Eq. (29) can be written 
as 

TABLE V 

Elastic constant Contribution of (47) in units of 2 2/3kT/3aa 

TABLE VI 

Elastic constant Value in units of 2 2/3kT/3a2 

We can now write down the total contributions of integral (47) to the elastic 
constants which are given in Table V. Here again we have divided the C,, contri- 
bution by four. 

Finally, upon summing the contributions given in the Tables III, IV and V, we 
obtain the elastic constants to order l/P given in Table VI since the Jacobian does 
not make a l/t2 contribution. 
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3. THE EFFECT OF VACANCIES ON THE ELASTIC CONSTANTS 

If we introduce m, monovacancies into the lattice of N rigid disks, the 
one-particle cell cluster expression for the nonconfigurational free energy becomes: 

2;, g kT [N In X2 - 4 ln(det[27,, + S,$]) - (N - 6m,) In Q - ml i In ~01, 
63=1 

(48) 
where 

Qe" = j fi H(C,) dr. 
d=l 
d#e 

This expression assumes that no vacancy clusters are present. QeV represents the 
area in which the center of disk e is free to move when it is surrounded by five fixed 
neighbors and a vacancy in the high density limit. This area can be obtained by 
omitting one side from the hexagon in Fig. 3 and extending the two adjacent sides 
until they intersect. From geometry we can show that this area is equal to (7/6)Q. 
Although all the QeV are equal to (7/6)Q, it is necessary to write the last term in 
Eq. (64) as a summation over the six configuration integrals of the six disks 
surrounding a monovacancy because eventually the derivatives of these integrals 
are considered. These differ according to which disk is considered. 

We can now write an expression for the elastic constants C& associated with a 
lattice containing ml monovacancies. We again exclude terms arising from the 
Jacobian since again we are interested only in contributions of the order of l/t” 

Obviously, the first two terms in Eq. (50) have already been considered in the 
perfect lattice case. Considering the first derivative of QeV, 



EFFECT OF MONOVACANCIES 459 

Upon making the appropriate transformations and simplifications and dividing 
through by Qev, we obtain 

(52) 

Omitting the derivative (LC,/8~D),,=o , which is just a constant in the high 
density limit and 1/7t, this integral, for c1 # e is equal to one if a is not adjacent to 
e in the sequence 1, 2, 3, 4, 5, and 6, where 1 and 6 are considered to be adjacent 
numbers, and is equal to two when a and e are adjacent numbers in this sequence. 

We can now evaluate the contributions of the third term in Eq. (50) to the elastic 
constants which are given in Table VII. In Table VII and the following tables, the 
vacancy concentration unit 0 = ml/N is used. 

TABLE VII 

Elastic constant Contribution of &$ 

in units of T 0) 

We now consider the last term in Eq. (50), 

+ jj li *(cJ ($) jl *(cJ (2) bl WC,) 60 8w]q=o. (53) a=1 LX#e b#a.e dfa,b,e 
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The integral involving 6’ is handled as before and an integral analogous to (46) 
is obtained: 

(54) 
d2a.b.e 

If the lines described by the arguments of the delta functions in the integral 
intersect within the area described by the unit step functions, the integral is equal 
to one; if not, or if the lines are parallel, the integral is equal to zero. The contri- 
butions of term (54) to the elastic constants are given in Table VIII. 

Finally, the last integral in Eq. (53) can be written in the high density limit as 

- $Z kl il bi (%)qzo (%)n=o j j *(h') '(4,') fil H(+d? szlsz~ * 
a#e b#a,e d#a.b.e 

(55) 
TABLE VIII” 

Elastic constant 
2 43 

Contribution of (54) in units of 3aa BkT 

27/14P 

27/14P 

9/14P 

9/14P 

0 

0 

& Contributions to C;‘,have been divided by four as before. 

The integral in (55) has already been considered in (54). The contributions of 
(55) to the elastic constants are given in Table IX. Finally, upon combining all 
the contributions from Tables VII, VIII, and IX, and using the results in Table VI, 
we can write out the elastic constants of the defect rigid disk system as given in 
Table X. 
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TABLE IXa 

Elastic constant 
2 d/J 

Contribution of Eq. (55) in units of 3aa BkT 

-45/14P 

-45/14P 

-15/14P 

15/14t* 

C1”, and CiI 0 

Ci6 and Ci2 0 

8 Contributions to C;,have been divided by four as before. 

TABLE X 

Elastic constant Value in units of g kT 

4. DISCUSSION 

We see from our results that the elastic stiffness constants of a rigid disk crystal 
are proportional to the temperature. In contrast to this, the elastic constants of real 
crystals normally decrease as the temperature increases. In the rigid disk case, as 
temperature increases, the frequency at which we find a disk center within any area 
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increment 6A of its free area increases making it more difficult to deform this area. 
This is the only consideration we need to make as the rigid disk potential we use 
only specifies that there can be no overlap of disks. Hence, the elastic constants 
of a rigid disk solid are proportional to the temperature. 

The elastic constants calculated for the two types of lattices we have considered 
obey the following relations: 

Cl, = G2 (56) 

G, = xc11 - Cl,> = HG, - Cl,). 

These relations found for a two-dimensional hexagonal lattice are the analogs of 
relations valid for three-dimensional hexagonal systems [7]. 

Using one-particle cell cluster theory, the elastic constant C,, was calculated to 
be zero. Upon extending this calculation to include the correlated motion correction 
factor introduced through the consideration of two-particle clusters, C,, is found 
to be nonzero. Hence, the result C,, = 0 appears to be an artifact of the one-particle 
approximation. 

Poisson’s ratio u is given by Eq. (58) 

a=-rlz= Cl2 
711 Cl1 + Cl, . (58) 

Hence, if we apply a small, positive strain rlI to a perfect lattice of rigid disks near 
close packing, we expect a corresponding small, negative Q strain to arise. This is 
not due to any type of interdisk potential. The rigid disk potential of our system 
only specifies that there can be no overlap of disks. Hence, when strain qI is 
introduced into the system, there are no forces present to make it contract along 
the 2-direction resulting in a negative strain Q ; as in real solids, where potential 
interactions tend to deform the solid in such a way as to maintain its component 
atoms at their most stable separations. The fact that a small, negative strain Q 
actually arises in a rigid disk system in this situation is apparently due to the areas 
opening up between disks as they move apart in the l-direction which allows the 
2 components of the distances of separation of the disks to become slightly 
smaller on the average which is equivalent to a small, negative strain Q . 

The introduction of monovacancies into the lattice would be expected to enhance 
the effect mentioned in the previous paragraph since the areas opening up between 
disks if either of the strains Q or Q were introduced into a monovacancy-containing 
lattice would be on the average slightly larger, which would allow more relaxation 
into these areas to occur. Hence CJ is predicted to be larger in a monovacancy- 
containing lattice, as indeed it turns out to be when we substitute our expressions 
for C,V, and C,V, into Eq. (58). 
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The equilibrium concentration of monovacancies in a rigid disk solid has been 
evaluated [8], and is given approximately by 

4 es (3” exp (- g) exp (- +-). (59) 

Only one-particle cell cluster theory has been used in the derivation of Eq. (59). 
As we approach the high density limit, t becomes small so 8, becomes very small. 
When t = 0.10, we find 8, E 4 x 10e5 and when t = 0.05, we find 0, z 2 x 1O-g. 
Hence, because the equilibrium concentration of monovacancies is so low near the 
high density limit, the effect of monovacancies on the calculated elastic constants 
near this limit is small. In Table XI a comparison of the elastic constants in the 
perfect and vacancy-containing lattices is made for t = 0.01 and r = 0.05. 

TABLE XI* 

For t = 0.1 For t = 0.05 

Elastic constant C,, Value of C,, C,“, - C,, Value of C,, cm - G 

Cl, , cm 100 0.115 400 2.30 x 1O-5 
Gl , Cl, 0 0.125 0 2.50 x 1O-5 
G6 50 -0.005 200 -1.03 x 10-S 

a The values of the elastic constants used in this table are those obtained using only one-particle 

2 4\/skT 
cell cluster theory, and they are expressed in units of - 

3a* 
. 

In this presentation we have have been concerned only with rigid disk systems 
at a relatively high density where t is small. At such densities, curvature corrections, 
which we have neglected by approximating the circular cell boundaries by tangent 
lines, make at most a contribution of order l/t to the elastic constants. Therefore, 
curvature corrections have been neglected. 
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